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Abstract. For charmed color-suppressed B̄0 → D0π0 decay, non-factorizable contributions are expected
to be leading, and the naive factorization description breaks down. We study the 1/mb power-suppressed
non-factorizable effect in B̄0 → D0π0, which is due to soft exchange between the emitted heavy–light
quark pair and the Bπ system, in the framework of QCD light-cone sum rules. The resulting correction
to the decay amplitude is found to be numerically comparable with the corresponding factorizable piece,
estimated to be at about (50–110)% of the latter. The relevant parameter a2 receives a positive number
contribution, due to the factorizable correction and the power-suppressed soft effect. Our findings could
be crucial to a phenomenological understanding of the B̄0 → D0π0 decay.

1 Introduction

“Naive” factorization [1], or the “generalized” factoriza-
tion [2] developed subsequently, has been viewed as a sim-
ple but predictive model for two-body hadronic decays of
heavy mesons prior to the presentation of QCD factor-
ization [3]. At present, it is known to us that for a large
class but not all of two-body non-leptonic B decays, QCD
factorization can furnish a rigorous theoretical basis for
the naive factorization assumption of the hadronic matrix
elements. Some examples for which the naive factoriza-
tion holds up to power corrections in ΛQCD/mb and αs
are the charmless decays B → ππ, πK and the class-1
charmed decays B̄0 → D(∗)+π− (relevant to the param-
eter a1). In the heavy quark limit mb → ∞, but to all
orders of perturbation theory, this type of processes can
be systematically computed in terms of convolutions of
hard-scattering kernels with the leading-twist light-cone
distribution amplitudes of the corresponding light mesons.
Such a treatment is based on a color-transparency argu-
ment [4] that for the limit in question the momentum car-
ried by a light meson which is directly emitted off the
relevant weak vertex is so large that it has not sufficient
time to exchange soft gluons with the system including
the decaying B meson and the produced meson picking
up a spectator quark. Typical examples for which QCD
factorization does not apply are the class-2 charmed de-
cays B̄0 → D(∗)0π0 (usually called color-suppressed decays
for the reason that the relevant phenomenological param-
eters a2(Dπ) is of O(1/Nc) in the large Nc accounting [5]).
The reason is that unlike the aforementioned case where a
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light meson is emitted, the heavy D(∗)0 meson, as an emit-
ted particle which is neither small (∼ 1/ΛQCD) nor fast,
is produced in the color-suppressed decays and so cannot
be decoupled from the Bπ system. This indicates clearly
that the factorization contributions to B̄0 → D(∗)0π0 do
not provide a leading result, for all that they are present,
and non-factorizable soft contributions, for example the
charge-exchanging rescattering processes [6] from the dom-
inate class-1 channel, dominate in such decays. Hence, at
present a theoretical understanding is not accessible for
the color-suppressed decays B̄0 → D(∗)0π0 and also for
the class-3 decays, say, B− → D(∗)0π− to a certain ex-
tent, although in the latter case the class-2 amplitudes
are predicted to be power-suppressed with respective to
the corresponding class-1 ones in QCD factorization. It is
quite a challenge to give a consistent theoretical explana-
tion of the data on B → D(∗)π, after new experimental
observations B(B̄0 → D0π0) = (2.74+0.36

−0.32 ±0.55) ·10−4 [7]
and B(B̄0 → D0π0) = (3.1±0.4±0.5) ·10−4 [8] have been
announced respectively by the CLEO and Belle Collabora-
tions. While there exist attempts to quantitatively under-
stand the color-suppressed decays B̄0 → D(∗)0π0 in pertur-
bative QCD(pQCD) [9] and soft-collinear effective theory
(SCET) [10], the model-independent discussions [11–13]
can help to get interesting suggestions about the magni-
tudes and relative phase of the parameters a1,2. A couple
of important findings can be summarized as follows.
(1) A sizable relative strong interaction phase is expected
between class-1 and class-2B→D∗π decay amplitudes [11].
(2) The parameter |a2| is extracted to be |a2(Dπ)| ∼ 0.35–
0.60 and |a2(D∗π)| ∼ 0.25–0.50 from the data [13].
(3) Several types of possible power corrections to the a1
parameter have been estimated and found to be small; a
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near-universal value |a1| ≈ 1.1 observed experimentally is
now put on a firm footing [11].

Now we are not able to give a reliable theoretical in-
terpretation for the first two observations, because of the
unknown leading non-perturbative effects involved in the
parameter a2(Dπ). However, the 1/mb power-suppressed
non-factorizable contributions to a2(Dπ), which come from
soft exchange between the emitted heavy–light quark pair
and the Bπ system, would be expected to be much more
important than in the case of B → ππ, πK and thus a
reliable estimate of such an effect is crucial.

Earlier discussion on the power-suppressed contribution
to B̄0 → D0π0 in the QCD light-cone sum rule (LCSR)
approach [14] can be found in [15]. Also, in the framework
of a generalized QCD LCSR [16] similar effects have been
estimated for some of the other importantB decays [16–18].
In this paper, we intend to apply the generalized QCD
LCSR approach to estimate the soft effect in the color-
suppressed B̄0 → D0π0 decay and then compare the result
yielded with the naive factorization contribution.

This paper is organized as follows: the following section
contains a detailed derivation of LCSR’s for the power-
suppressed soft contribution to the B̄0 → D0π0 decay
amplitude and the numerical results. The last section is
devoted to a discussion and conclusion.

2 LSCRs for soft non-factorizable effect

The relevant effective weak Hamiltonian for the B̄0 →
D0π0 decay is written as [19]

HW =
GF√

2
VcbV

∗
ud [C1(µ)O1(µ) + C2(µ)O2(µ)] , (1)

whereC1,2 are the Wilson coefficients, Vij the CKM matrix
elements and O1,2 the four-quark operators given by

O1 = (c̄Γµu)(d̄Γµb), O2 = (d̄Γµu)(c̄Γµb), (2)

with Γµ = γµ(1−γ5). Further, by the use of a Fierz trans-
formation (1) can be rewritten as

HW =
GF√

2
VcbV

∗
ud (3)

×
[(
C1(µ) +

1
3
C2(µ)

)
O1(µ) + 2C2(µ)Õ1(µ)

]
,

where

Õ1 =
(
c̄
λa

2
Γµu

) (
d̄
λa

2
Γµb

)
, (4)

with λa being the color SU(3) matrices.
Among the non-leading part of the decay amplitude

〈D0π0|HW|B̄0〉 is the factorizable and power-suppressed
soft contribution. We can parameterize it as follows:

ANL(B̄0 → D0π0)

= AF (B̄0 → D0π0) + AS(B̄0 → D0π0) (5)

= −i
GF

2
VcbV

∗
udm

2
BfDF

Bπ
0 (m2

D)aNL
2 ,

where FBπ
0 is the B → π form factor, fD the D meson de-

cay constant, and AF (B̄0 → D0π0) and AS(B̄0 → D0π0)
express the factorizable and power-suppressed soft contri-
butions respectively:

AF (B̄0 → D0π0)

= −i
GF

2
VcbV

∗
udm

2
BfDF

Bπ
0 (m2

D)
(
C1 +

C2

3

)
, (6)

AS(B̄0 → D0π0)

=
GF√

2
VcbV

∗
ud(2C2)〈D0π0|Õ1|B̄0〉S , (7)

and the parameter aNL
2 is defined as

aNL
2 =

(
C1 +

C2

3

) (
1 +

AS(B̄0 → D0π0)
AF (B̄0 → D0π0)

)
. (8)

For a quantitative estimate of the non-factorizable ma-
trix element 〈D0π0|Õ1|B̄0〉, we make use of the generalized
QCD LCSR method developed in [16]. We start with the
correlation function:

Fα(p, q, k) = i2
∫

d4xe−i(p+q)x
∫

d4yei(p−k)y (9)

×〈π0(q)|T{jD
α (y)Õ1(0)jB

5 (x)}|0〉,
where jD

α = ūγαγ5c and jB
5 = mbb̄iγ5d are currents in-

terpolating the D0 and B̄0 meson fields respectively. The
correlator is a function of the three independent momenta
chosen to be q, p − k and k. An important point of this
method is to introduce a fictitious unphysical momentum k.
Consequently, in the correlator the quark states before and
after the b-quark decay will have different four-momentum,
and thus one avoids a continuum of light parasitic contribu-
tions in the B channel. Of course, the unphysical quantity
must disappear from the B̄0 → D0π0 ground state contri-
bution in the dispersion integral. This can be guaranteed,
as will be seen, by picking out a reasonable kinematical
region for which the LCSR calculation is effective.

The kinematical decomposition of the correlation func-
tion (9) can proceed in the following form:

Fα = (p−k)αF
(p−k)+qαF (q)+kαF

(k)+εαβλρq
βpλkρF (ε).

(10)
Here, the F i are scalar functions of six independent Lorentz
invariants, which are chosen to be P 2 = (p + q − k)2, p2,
q2, (p+ q)2, k2 and (p− k)2. Using the operator product
expansion (OPE) near the light-cone x2 ∼ y2 ∼ (x−y)2 ∼
0, the correlator (9) is calculable. For the calculation to go
effectively, the momenta squared P 2, (p+ q)2 and (p− k)2
have to be taken spacelike and large in order to stay far
away from the hadronic thresholds in both the B and D
channels. Furthermore, a simple and possible choice, for the
external momentum squared k2 and kinematical invariant
p2, is to let k2 = 0 and p2 = m2

D,mD being the mass ofD0.
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The pion is taken on shell and we set q2 = 0. Altogether,
the kinematical region used for our LCSR calculation is

q2 = k2 = 0, p2 = m2
D, |(p− k)|2 � ΛQCD,

|(p+ q)|2 � ΛQCD, |P |2 � ΛQCD. (11)

In this region the light-cone OPE is applicable to the
correlator (9) and the result can be expressed in the form of
hard-scattering amplitudes convoluted with the pion light-
cone distribution amplitudes. We note that in (10) the
relevant invariant amplitude of our desire is only F (p−k).
The QCD result for F (p−k) is, in the general form of a
dispersion relation, expressed as

F
(p−k)
QCD

(
(p− k)2, (p+ q)2, P 2) (12)

=
1
π

∫ ∞

m2
c

ds
ImsF

(p−k)
QCD (s, (p+ q)2, P 2, p2)

s− (p− k)2
.

On the other hand, we can obtain a corresponding dis-
persion relation on the hadronic level. By inserting in the
right hand side of (9) a complete set of hadronic states
with D0 quantum numbers, we get

F (p−k) (
(p− k)2, (p+ q)2, P 2, p2)

=
ifDΠ

(
(p+ q)2, P 2, p2

)
m2

D − (p− k)2

+

∞∫
sD

h

ds
ρD

h (s, (p+ q)2, P 2, p2)
s− (p− k)2

, (13)

where ρD
h (s, (p + q)2, P 2, p2) and sD

h are respectively
the spectral function and the threshold mass squared of
the excited and continuum states in the D channel,
Π((p + q)2, P 2, p2) is a 2-point correlation function with
the following definition:

Π
(
(p+ q)2, P 2, p2) = i

∫
d4x e−i(p+q)x (14)

×〈D0(p− k)π0(q)|T{Õ1(0)j(B)
5 (x)}|0〉.

By assuming quark–hadron duality we replace sD
h with

the effective threshold of the perturbative continuum sD
0 ,

and substitute the hadronic spectral density ρD
h in (13)

with the corresponding QCD one, i.e.,

ρD
h (s, (p+ q)2, P 2, p2)Θ(s− sD

h ) (15)

=
1
π

ImsF
(p−k)
QCD (s, (p+ q)2, P 2, p2)Θ(s− sD

0 ).

Matching the hadronic relation (13) onto the QCD re-
sult (12) yields the expression

ifDΠ
(
(p+ q)2, P 2, p2

)
m2

D − (p− k)2
(16)

=
1
π

∫ sD
0

m2
c

ds
ImsF

(p−k)
QCD (s, (p+ q)2, P 2, p2)

s− (p− k)2
,

which then becomes

Π
(
(p+ q)2, P 2, p2) =

−i
πfD

∫ sD
0

m2
c

ds e(m2
D−s)/M2

(17)

×ImsF
(p−k)
QCD (s, (p+ q)2, P 2, p2),

after a Borel transformation in the variable (p− k)2.
Next, for the above expression which is only valid at

large spacelike P 2, we have to perform an analytic contin-
uation to large timelike P 2, keeping the variable (p+ q)2
fixed. A natural continuation point is P 2 = m2

B . The an-
alytic continuation of (17) yields the result

Π
(
(p+ q)2,m2

B , p
2) = i

∫
d4x e−i(p+q)x

×〈D0(p− k)π0(q)|T{Õ1(0)j(B)
5 (x)}|0〉

=
−i

πfD

∫ sD
0

m2
c

ds e(m2
D−s)/M2

(18)

×ImsF
(p−k)
QCD (s, (p+ q)2,m2

B , p
2).

Then we employ the analytical property of the amplitude
Π

(
(p+ q)2,m2

B , p
2
)

in the spacelike variable (p+ q)2. In-
serting in the right hand side of (18) a complete set of
hadronic states with the B̄0 meson quantum numbers, we
have the following dispersion relation:

Π
(
(p+ q)2,m2

B , p
2)

=
fBm

2
B〈D0(p)π0(q)|Ō1|B̄0(p+ q)〉

m2
B − (p+ q)2

+
∫ ∞

sB
h

ds′ ρ
(B)
h (s′,m2

B , p
2)

s′ − (p+ q)2
, (19)

where the B meson decay constant is defined as

〈B̄0|b̄iγ5d|0〉 = mBfB . (20)

At this point, we would like to emphasize that the un-
physical momentum k disappears from the ground state
contribution due to the simultaneous conditions P 2 =
(p+ q−k)2 = m2

B and (p+ q)2 = m2
B , so that the physical

B̄0 → D0π0 matrix element of the operator Õ1 is recovered.
Then (18) can be changed to the form of a double

dispersion relation as follows:

Π
(
(p+ q)2,m2

B , p
2)

= − i
π2fD

∫ sD
0

m2
c

ds e(m2
D−s)/M2

∫ R(s,m2
B ,p2)

m2
b

ds′

s′ − (p+ q)2

× Ims′ImsF
(p−k)
QCD (s, s′,m2

B , p
2). (21)

The upper limit R of the integration in s′ rests generally
on s,m2

B and p2. At present, we make use of quark–hadron
duality once more and approximate the integral in (19) by
the s′ ≥ sB

0 part of the dispersion integral (21), where sB
0
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is the effective threshold in the B channel. After a Borel
transformation with respect to the variable (p + q)2 has
been made, the LCSR for the B̄0 → D0π0 matrix element
of the operator Õ1 is of the following form:

〈D0(p− k)π0(q)|Õ1|B̄0(p+ q)〉 =
−i

π2fDfBm2
B

×
∫ sD

0

m2
c

ds e(m2
D−s)/M2

∫ R̄(s,m2
B ,p2,sB

0 )

m2
b

ds′ e(m2
B−s′)/M ′2

×Ims′ ImsF
(p−k)
QCD (s, s′,m2

B , p
2), (22)

where R̄ is the upper limit of the integration in s′ after the
use of the duality ansatz.

In order to obtain a LCSR estimate of the desired soft
non-factorizable contribution 〈D0π0|Õ1|B̄0〉S , which is due
to soft gluon emission off the emitted heavy–light quark pair
and subsequent absorption into the Bπ system, we have to
know the explicit expression of F (p−k)

QCD . In the derivation

of F (p−k)
QCD , we employ the light-cone expansion form with

higher-twist terms included for amassive quark propagator,
which, in the fixed-point gauge and only considering a
correction of operators with one gluon field, reads [20]

Sij(x1, x2|m) ≡ −i〈0|T{qi(x1) q̄j(x2)}|0〉

=
∫

d4k

(2π)4
e−ik(x1−x2) (23)

×



�k +m

k2 −m2 δ
ij −

1∫
0

dv gsGµν
a (vx1 + (1 − v)x2)

(
λa

2

)ij

×
[

1
2

�k +m

(k2 −m2)2
σµν − 1

k2 −m2 v(x1 − x2)µγν

]
 ,

whereGµν
a is the gluon-field strength, and gs the strong cou-

pling constant. This means that only the higher-twist com-
ponents of light-cone distribution amplitudes for the rel-
evant pion, which are corresponding to quark–antiquark–
gluon non-local operators, would be involved in the final
LCSR result.

After some lengthy calculations we obtain the twist-
3 contributions:

F
(p−k)
tw3 = − mbf3π

4
√

2π2

×
∫ 1

0
dv

∫
Dαi

φ3π(αi, µ)
m2

b − (p+ q(1 − α1))2

×
∫ 1

0
dx

x(1 − x)
(1 − x)m2

c −Q2x(1 − x)

× q · (p− k) [(2 − v)q · k + 2(1 − v)q · (p− k)]

− mbf3π

4
√

2π2

∫ 1

0
dv

∫
Dαi

φ3π(αi, µ)
m2

b − (p+ q(1 − α1))2

×
∫ 1

0
dx

x(1 − x)(2x− 1)
m2

c −Q2x(1 − x)
q · (p− k)

× [(2 − 3v)q · k + 2(1 − v)q · (p− k)] , (24)

where φ3π is the twist-3 distribution amplitude of the pion,
Q = p−k+qvα3. The definition of the twist-3 distribution
amplitude as well as of the twist-4 ones φ⊥, φ||, φ̃⊥ and
φ̃||, which will be encountered in the calculation, is given
below through the relevant matrix elements:

−
√

2〈0|d̄(0)σµνγ5Gαβ(vy)d(x)|π0(q)〉
= if3π [(qαqµgβν − qβqµgαν) − (qαqνgβµ − qβqνgαµ)]

×
∫

Dαiφ3π(αi, µ)e−iq(xα1+yvα3), (25)

−
√

2〈0|d̄(0)iγµG̃αβ(vy)d(x)|π0(q)〉

= qµ
qαxβ − qβxα

qx
fπ

∫
Dαiφ̃||(αi, µ)e−iq(xα1+yvα3)

+(g⊥
µαqβ − g⊥

µβqα)fπ

×
∫

Dαiφ̃⊥(αi, µ)e−iq(xα1+yvα3), (26)

−
√

2〈0|d̄(0)γµγ5Gαβ(vy)d(x)|π0(q)〉 (27)

= qµ
qαxβ − qβxα

qx
fπ

∫
Dαiφ||(αi, µ)e−iq(xα1+yvα3)

+(g⊥
µαqβ − g⊥

µβqα)fπ

∫
Dαiφ⊥(αi, µ)e−iq(xα1+yvα3),

where f3π is a non-perturbative quantity defined by the
matrix element 〈0|ūσµνγ5Gαβd|π〉, G̃αβ = 1

2 εαβρσG
ρσ,

Gρσ = gs λ
a/2Gρσ

a , Dαi = dα1dα2dα3δ(1−α1 −α2 −α3),
and g⊥

αβ = gαβ − (xαqβ +xβqα)/qx. The asymptotic forms
of all these distribution amplitudes are given by [21]

φ3π(αi, µ) = 360α1α2α
2
3 , (28)

φ⊥(αi, µ) = 10δ2(µ)(α1 − α2)α2
3, (29)

φ||(αi, µ) = 120δ2(µ)ε(µ)(α1 − α2)α1α2α3, (30)

φ̃⊥(αi, µ) = 10δ2(µ)α2
3(1 − α3), (31)

φ̃||(αi, µ) = −40δ2(µ)α1α2α3, (32)

with δ2(µ) and ε(µ) being two non-perturbative parame-
ters.

By changing the order of the integral variables, (24) is
converted into the following form:

F
(p−k)
tw3

=
mbf3π

16
√

2π2

∫ ∞

m2
c

ds
s− (p− k)2

∫ 1

m2
c

s

dy

×
∫ 1

x(s,y,P 2)

du
m2

b − (p+ qu)2

×
∫ u

x(s,y,P 2)

dv
v2 φ3π(1 − u, u− v, v)
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×
[
s− m2

c

y
+

(
(p+ q)2 − p2) (2v − x(s, y, P 2))

]

+
mbf3π

16
√

2π2

∫ ∞

m2
c

ds
s− (p− k)2

∫ 1

m2
c

s

dy(2y − 1)

×
∫ 1

x(s,y,P 2)

du
m2

b − (p+ qu)2

×
∫ u

x(s,y,P 2)

dv
v2 φ3π(1 − u, u− v, v) (33)

×
[
m2

c

y
− s+

(
(p+ q)2 − p2) (2v − 3x(s, y, P 2))

]
,

where x =
(
s− m2

c

y

)
/(s− P 2).

The derivation of twist-4 contributions turns out to be
even more tedious. The result is given as follows:

F
(p−k)
tw4

=
m2

bfπ

8
√

2π2

∫ ∞

m2
c

ds
s− (p− k)2

∫ 1

m2
c

s

dy

×
∫ 1

x(s,y,P 2)

du
m2

b − (p+ qu)2

×
∫ u

x(s,y,P 2)

dv
v
φ̃⊥(1 − u, u− v, v)

[
3 − 2

v
x(s, y, P 2)

]

+
m2

bfπ

8
√

2π2

∫ ∞

m2
c

ds
s− (p− k)2

∫ 1

m2
c

s

dy(2y − 1)

×
∫ 1

x(s,y,P 2)

du
m2

b − (p+ qu)2

×
∫ u

x(s,y,P 2)

dv
v
φ⊥(1 − u, u− v, v)

[
3 − 4

v
x(s, y, P 2)

]

+
m2

bfπ

8
√

2π2

∫ ∞

m2
c

ds
s− (p− k)2

∫ 1

m2
c

s

dy

×
∫ 1

x(s,y,P 2)

du

[(m2
b − (p+ qu)2]2

∫ u

x(s,y,P 2)

dv
v2 Φ̃1(1 − u, v)

×
[
s− m2

c

y
+

(
(p+ q)2 − p2) (−v + x(s, y, P 2))

]

− m2
bfπ

8
√

2π2

∫ ∞

m2
c

ds
s− (p− k)2

∫ 1

m2
c

s

dy(2y − 1)

×
∫ 1

x(s,y,P 2)

du

[(m2
b − (p+ qu)2]2

×
∫ u

x(s,y,P 2)

dv
v2 Φ1(1 − u, v)

[
2

(
s− m2

c

y

)
+ (P 2 − s)v

]

− m2
bfπ

8
√

2π2

∫ ∞

m2
c

ds
s− (p− k)2

∫ 1

m2
c

s

dy

×
∫ 1

x(s,y,P 2)

du

[m2
b − (p+ qu)2]2

Φ̃2(u)
u2

×
[
s− m2

c

y
+

(
(p+ q)2 − p2) (−u+ x(s, y, P 2)

]

− m2
bfπ

8
√

2π2

∫ ∞

m2
c

ds
[s− (p− k)2]2

∫ 1

m2
c

s

dy
P 2

P 2 − m2
c

y

×
∫ 1

x(s,y,P 2)

du
m2

b − (p+ qu)2
Φ̃2(u)
u2

×
[
x(s, y, P 2)

−P 2 (2 q · (p− k))2

×
(

1 − x(s, y, P 2)
u

q · k
q · p

)]

+
m2

bfπ

8
√

2π2

∫ ∞

m2
c

ds
s− (p− k)2

∫ 1

m2
c

s

dy(2y − 1)

×
∫ 1

x(s,y,P 2)

du

[m2
b − (p+ qu)2]2

× Φ2(u)
u2

[
2

(
s− m2

c

y

)
+ (P 2 − s)u

]

− m2
bfπ

8
√

2π2

∫ ∞

m2
c

ds
[s− (p− k)2]2

∫ 1

m2
c

s

dy(2y − 1)

× P 2

P 2 − m2
c

y

∫ 1

x(s,y,P 2)

du
m2

b − (p+ qu)2

× Φ2(u)
u2

[
x(s, y, P 2)

−P 2 (2 q · (p− k))2

×
(

1 − 2x(s, y, P 2)
u

) (
1 − q · k

q · p
)]

, (34)

with the scalar functions Φi and Φ̃i defined by

Φ1(u, v)

=
∫ u

0
dω (φ⊥(ω, 1 − ω − v, v)

+φ||(ω, 1 − ω − v, v)
)
,

Φ2(u)

=
∫ u

0
dω′

∫ 1−ω′

0
dω′′ (φ⊥(ω′′, 1 − ω′′ − ω′, ω′)

+φ||(ω′′, 1 − ω′′ − ω′, ω′)
)
, (35)

Φ̃1(u, v)

=
∫ u

0
dω

(
φ̃⊥(ω, 1 − ω − v, v)

+φ̃||(ω, 1 − ω − v, v)
)
,

Φ̃2(u)
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=
∫ u

0
dω′

∫ 1−ω′

0
dω′′

(
φ̃⊥(ω′′, 1 − ω′′ − ω′, ω′)

+φ̃||(ω′′, 1 − ω′′ − ω′, ω′)
)
. (36)

The resulting expression (34) is much more complicated
than those in the case of B → ππ, πK [17] and B → J/ψK
[18], because of themass asymmetry of the two quarks in the
D meson. In contrast to the latter case in which there is no
contribution ofφi’s due to cancellation in the corresponding
twist-4 parts, the twist-4 piece receives the contributions
from not only φ̃i’s but also φi’s in the present case.

Toproceed,we should change the above expressions (33)
and (34) into the desired form of a double dispersion re-
lation. For the twist-3 contribution F (p−k)

tw3 , we have a dis-
persion expression in (p− k)2:

F
(p−k)
tw3 (37)

=
1
π

∫ ∞

m2
c

ds
s− (p− k)2

Ims F
(p−k)
tw3 (s, (p+ q)2, P 2, p2) ,

where

Ims F
(p−k)
tw3 (s, (p+ q)2, P 2, p2)

=
mbf3π

16
√

2π

∫ 1

m2
c

s

dy
∫ 1

x(s,y,P 2)

du
m2

b − (p+ qu)2

×
∫ u

x(s,y,P 2)

dv
v2 φ3π(1 − u, u− v, v)

×
[
s− m2

c

y
+

(
(p+ q)2 − p2) (2v − x(s, y, P 2))

]

+
mbf3π

16
√

2π

∫ 1

m2
c

s

dy(2y − 1)
∫ 1

x(s,y,P 2)

du
m2

b − (p+ qu)2

×
∫ u

x(s,y,P 2)

dv
v2 φ3π(1 − u, u− v, v) (38)

×
[
−s+

m2
c

y
+

(
(p+ q)2 − p2) (2v − 3x(s, y, P 2))

]
.

Then for Ims F
(p−k)
tw3 we make Taylor expansion in the vari-

able x(s, y, P 2). Up to order O(x3) the result is

ImsF
(p−k)
tw3 (s, (p+ q)2, P 2)

=
mbf3π

16
√

2π2

∫ 1

0

du
m2

b − (p+ qu)2

×
∫ 1

m2
c

s

dy
{∫ u

0

dv
v2 φ3π(1 − u, u− v, v)

×
[
s− m2

c

y
+ 2v

(
(p+ q)2 − p2)]

−
[∫ u

0

dv
v2 φ3π(1 − u, u− v, v)

(
(p+ q)2 − p2)

+
(
s− m2

c

y

) (
1
v2 φ3π(1 − u, u− v, v)

)
v=0

]
x(s, y, P 2)

−
(
s− m2

c

y

) [
∂

∂v

(
1
v2 φ3π(1 − u, u− v, v)

)]
v=0

× x2(s, y, P 2)
2

}

+
mbf3π

16
√

2π2

∫ 1

0

du
m2

b − (p+ qu)2

×
∫ 1

m2
c

s

dy(2y − 1)
{∫ u

0

dv
v2 φ3π(1 − u, u− v, v)

×
[
−s+

m2
c

y
+ 2v

(
(p+ q)2 − p2)]

−
[
3

∫ u

0

dv
v2 φ3π(1 − u, u− v, v)

(
(p+ q)2 − p2)

+
(

−s+
m2

c

y

) (
1
v2 φ3π(1 − u, u− v, v)

)
v=0

]

×x(s, y, P 2)

+
[(

4
v2 φ3π(1 − u, u− v, v)

(
(p+ q)2 − p2))

−
(

−s+
m2

c

y

)
∂

∂v

(
1
v2 φ3π(1 − u, u− v, v)

)]
v=0

× x2(s, y, P 2)
2

}
+ O(x3). (39)

With the substitution u = (m2
b −p2)/(s′ −p2), the integral

inu in the above equation can get back to its dispersion form
∫ 1

0
du

F (u)
m2

b − (p+ qu)2
=

∫ ∞

m2
b

ds′

s′ − (p+ q)2
F (u(s′))
s′ − p2 .

(40)
At last the desired double dispersion form is achieved.

The twist-4 contribution F (p−k)
tw4 in (34) can be treated

similarly. The derivation is omitted to save some space. We
note that compared with the resulting twist-3 contribution,
the twist-4 part has some additional terms containing de-
nominators of the form

1
[s− (p− k)2]2

or
1

[m2
b − (p+ uq)2]2

. (41)

As argued in [18], however, those terms containing higher
powers of such denominators are numerically suppressed
and can be neglected safely. Therefore in the ensuing dis-
cussion we will not take them into account.

Putting everything together, we obtain the final LCSR
result for the soft contribution to the matrix element
〈D0(p)π0(q)|Õ1(0)|B̄0(p+ q)〉:
〈D0(p)π0(q)|Õ1(0)|B̄0(p+ q)〉S

=
−imb

8
√

2π2fDfBm2
B
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×
∫ sD

0

m2
c

dse(m2
D−s)/M2

∫ 1

uB
0

du
u

e(m2
B−(m2

b−m2
D(1−u))/u)/M ′2

×
∫ 1

m2
c

s

dy
{
f3π

2

[∫ u

0

dv
v2 φ3π(1 − u, u− v, v)

×
(
m2

b −m2
D

u
(2v − x(s, y,m2

B)) + s− m2
c

y

)

−
(
s− m2

c

y

) (
1
v2 φ3π(1 − u, u− v, v)

)
v=0

x(s, y,m2
B)

−
(
s− m2

c

y

) [
∂

∂v

(
1
v2 φ3π(1 − u, u− v, v)

)]
v=0

× x2(s, y,m2
B)

2

]

+mbfπ

[∫ u

0

dv
v2 φ̃⊥(1 − u, u− v, v)

×
(

3 − 2
v
x(s, y,m2

B)
)

+
(

3
v2 φ̃⊥(1 − u, u− v, v)

−
(

1
v

∂

∂v
φ̃⊥(1 − u, u− v, v)

))
v=0

x2(s, y,m2
B)

2

]}

+
−imb

8
√

2π2fDfBm2
B

∫ sD
0

m2
c

dse(m2
D−s)/M2

×
∫ 1

uB
0

du
u

e(m2
B−(m2

b−m2
D(1−u))/u)/M ′2

∫ 1

m2
c

s

dy(2y − 1)

×
{
f3π

2

[∫ u

0

dv
v2 φ3π(1 − u, u− v, v)

×
(
m2

b −m2
D

u
(2v − 3x(s, y,m2

B)) − s+
m2

c

y

)

−
(

−s+
m2

c

y

) (
1
v2 φ3π(1 − u, u− v, v)

)
v=0

x(s, y,m2
B)

+
[
4
m2

b −m2
D

u

1
v2 φ3π(1 − u, u− v, v)

−
(

−s+
m2

c

y

)
∂

∂v

(
1
v2 φ3π(1 − u, u− v, v)

)]
v=0

× x2(s, y,m2
B)

2

]

+mbfπ

[∫ u

0

dv
v2 φ̃⊥(1 − u, u− v, v)

×
(

3 − 4
v
x(s, y,m2

B)
)

+
(

3
(

1
v2 φ̃⊥(1 − u, u− v, v)

)
(42)

+
(

1
v

∂

∂v
φ̃⊥(1 − u, u− v, v)

))
v=0

x2(s, y,m2
B)

2

]} }
,

where uB
0 = (m2

b −m2
D)/(sB

0 −m2
D).

Let us proceed to the numerical discussion. The D
channel parameters are taken as [22] mD = 1.87 GeV,
mc = 1.3±0.1 GeV, fD = 170±10 MeV , sD

0 = 6±1 GeV2

and M2 = 1.5 ± 0.5 GeV2. The parameters in the B chan-
nel are chosen as [23]mB = 5.28 GeV,mb = 4.7±0.1 GeV,
fB = 180 ± 30 GeV, sB

0 = 35 ± 2 GeV2 and M ′2 = 10 ±
2 GeV2. For the non-perturbative quantities entering the
relevant light-cone distribution amplitudes, we use [22]
f3π = 0.0026 GeV2, δ2(µb) = 0.17 GeV2 and ε(µb) = 0.36,
whth µb =

√
m2

B −m2
b ∼ mb/2 ∼ 2.4 GeV. With these

inputs, the contributions of twist-3 and -4 fall into the
following ranges respectively:

i〈D0π0|Õ1|B̄0〉(tw3)
S = (0.024–0.053) GeV3, (43)

and

i〈D0π0|Õ1|B̄0〉(tw4)
S = (0.009–0.017) GeV 3, (44)

and the total contribution reads

i〈D0π0|Õ1|B̄0〉S = (0.033–0.070) GeV3. (45)

These sum rule results show a good stability against the
variations of both the Borel parameters in the given ranges.

3 Discussion and conclusion

Having at hand the LCSR result (45) for the matrix element
〈D0π0|Õ1|B̄0〉S , we can discuss the numerical influence of
the power-suppressed soft effect on B̄0 → D0π0.

TakingC1(µb) = −0.257,C2(µb) = 1.117, |Vcb| = 0.043
and |Vud| = 0.974, the magnitude of AS given by (7) is
estimated to be

|AS(B̄0 → D0π0)| = (2.48–5.27) × 10−8 GeV. (46)

It is in order that we now make a numerical comparison
between AS(B̄0 → D0π0) and the naive factorization piece
of the decay amplitude AF (B̄0 → D0π0) given by (6). With
the LCSR result FBπ

0 (m2
D) = 0.30 [24], we have

R1 = AS(B̄0 → D0π0)/AF (B̄0 → D0π0)

= 0.54–1.15. (47)

This result shows that the resulting soft effect is comparable
numerically with the corresponding factorizable one. A
similar ratiowas estimated for theB → J/ψK decay in [18],
with the value 0.30–0.70. It seems that power-suppressed
soft effects are even more important in B̄0 → D0π0 than
in B → J/ψK, as expected.

It is also interesting to compare numerically AS(B̄0 →
D0π0) with the factorizable contribution of the O2 opera-
tor,

A(O2)
F (B̄0 → D0π0) = − i

6
C2GFVcbV

∗
udm

2
BfDF

Bπ
0 (m2

D).
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To this end, we estimate the ratio

R2 = AS(B̄0 → D0π0)/A(O2)
F (B̄0 → D0π0).

The result is R2 = 0.17–0.35. Explicitly, our LCSR calcu-
lations favor aNL

2 > 0, indicating that the correction to a2,
which is relevant to the factorizable and power-suppressed
soft part, is positive. This forms a striking contrast to the
case of [15] where R2 is found to be −0.7, a large negative
number, so that the sign of aNL

2 is predicted to be negative,
i.e., a2 would receive a negative number correction from
such non-leading effects.

Naive factorization does not apply for the color-sup-
pressed B̄0 → D0π0 decay and as a consequence, the
power-suppressed soft exchange correction is expected to
be important and is worth discussing carefully, in spite of
its non-leading character. We discuss such an effect in the
generalized QCD LCSR. The numerical result is in agree-
ment with one’s expectations. The size of the resulting
contribution to the decay amplitude is found to be compa-
rable with the corresponding factorizable one, about (50–
110)% of the latter, and the parameter a2 would receive
a positive number correction, analogously to the case of
B → J/ψK. These observations would be of important
phenomenological interests. Of course, at this stage we are
not able to go a step further to give a complete estimate of
the B̄0 → D0π0 decay amplitude, due to the unknown lead-
ing non-factorizable soft contributions. More theoretical or
phenomenological efforts in this direction are necessary to
better understand the color-suppressed charmed decays of
B mesons.
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